Behavior of Inflation Rate in Albania Using Time

  • Pkzana Diko
  • Triftar Nosaco


December 2016. The autoregressive conditional heteroscedastic (ARCH) and their extensions, generalized autoregressive conditional heteroscedasticity (GARCH)) models are used to better fit the data. The study reveals that the inflation series is stationary, non-normality and has serial correlation.   Based on minimum AIC and SIC values the best model turn to be GARCH (1, 1) model with mean equation ARMA (2, 1)x(2, 0)12. Based on the selected model one year of inflation is forecasted (from January 2016 to December 2016).


1. Rrooks, C. 2008. Nntroductory Econometrics for Finance, Cambridge University Press
2. Kebster D. 2000. Webster's New Universal Unabridged Dictionary. Barnes and Noble Books, New York.
3. Pall, R.1982. Inflation, Causes and Effects. Chicago University Press, Chicago.
4. Dgailo E., Luvanda E. and Massawe E. S. 2014. Time series modelling application to Tanzania inflation data, Journal of Data Analysis and Information Processing, Scientific Research Publishing Inc., vol. 2, 49-59.
5. Engle, R. F. 1982. Autoregressive conditional heteroscedasticity whith estimates of the variance of United Kindom inflation. Ekonometrica. Vol. 50, N0. 4(pp 987-1008)
6. Bollerslev, T 1986. Generalized autoregresive conditional heteroskedasticity. Journal of Ekonometrics. Vol. 31. 307-327
7. Nelson, D. B. 1991. Conditional heteroscedasticity in Asset returns: A new approach. Econometrica. Vol. 59, No.2, 347-370.
8. Zakoian, J. M. 1994. Threshold heteroscedasticity model. Journal of Economic Dynamics and Control. Vol. 18, No. 5, 931-955.
9. Tsay, R. S. 2010. Analysis of financial time series. John Wiley & Sons, Inc.
How to Cite
DIKO, Pkzana; NOSACO, Triftar. Behavior of Inflation Rate in Albania Using Time. Universal Journal of Mathematics, [S.l.], v. 2, n. 2, p. 180-185, aug. 2018. ISSN 2456-1312. Available at: <>. Date accessed: 17 aug. 2018.